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Overview of the Tutorial

• History and Basics: Syntax, Semantics, ABoxes, Tboxes, Inference Problems

and their interrelationship, and Relationship with other (logical) formalisms

• Applications of DLs: ER-diagrams with i.com demo, ontologies, etc. including

system demonstration

• Reasoning Procedures: simple tableaux and why they work

• Reasoning Procedures II: more complex tableaux, non-standard inference prob-

lems

• Complexity issues

• Implementing/Optimising DL systems
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Description Logics

• family of logic-based knowledge representation formalisms well-suited for the

representation of and reasoning about

➠ terminological knowledge

➠ configurations

➠ ontologies

➠ database schemata

– schema design, evolution, and query optimisation

– source integration in heterogeneous databases/data warehouses

– conceptual modelling of multidimensional aggregation

➠ . . .

• descendents of semantics networks, frame-based systems, and KL-ONE

• aka terminological KR systems, concept languages, etc.
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Architecture of a Standard DL System
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Introduction to DL I

A Description Logic - mainly characterised by a set of constructors that allow

to build complex concepts and roles from atomic ones,

concepts correspond to classes / are interpreted as sets of objects,

roles correspond to relations / are interpreted as binary relations on objects,

Example: Happy Father in the DL ALC
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Man u (∃has-child.Blue) u

(∃has-child.Green) u

(∀has-child.Happy t Rich)
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Introduction to DL: Syntax and Semantics of ALC

Semantics given by means of an interpretation I = (∆I, ·I):

Constructor Syntax Example Semantics

atomic concept A Human AI ⊆ ∆I

atomic role R likes RI ⊆ ∆I × ∆I

For C, D concepts and R a role name

conjunction C u D Human u Male CI ∩ DI

disjunction C t D Nice t Rich CI ∪ DI

negation ¬C ¬ Meat ∆I \ CI

exists restrict. ∃R.C ∃has-child.Human {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

value restrict. ∀R.C ∀has-child.Blond {x | ∀y.〈x, y〉 ∈ RI ⇒ y ∈ CI}
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Introduction to DL: Other DL Constructors

Constructor Syntax Example Semantics

number restriction (≥ n R) (≥ 7 has-child) {x | |{y.〈x, y〉 ∈ RI}| ≥ n}

(; ALCN ) (≤ n R) (≤ 1 has-mother) {x | |{y.〈x, y〉 ∈ RI}| ≤ n}

inverse role R− has-child− {〈x, y〉 | 〈y, x〉 ∈ RI}

trans. role R∗ has-child∗ (RI)∗

concrete domain u1, . . . , un.P h-father·age, age. > {x | 〈uI
1 (x), . . . , uI

n(x)〉 ∈ P}

etc.

Many other different DLs/DL constructors have been investigated
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Introduction to DL: Knowledge Bases: TBoxes

For terminological knowledge: TBox contains

Concept definitions A =̇ C (A a concept name, C a complex concept)

Father =̇ Man u ∃has-child.Human

Human =̇ Mammal u ∀has-child−.Human

; introduce macros/names for concepts, can be (a)cyclic

Axioms C1 v C2 (Ci complex concepts)

∃favourite.Brewery v ∃drinks.Beer

; restrict your models

An interpretation I satisfies

a concept definition A
.
= C iff AI = CI

an axiom C1 v C2 iff CI
1 ⊆ CI

2

a TBox T iff I satisfies all definitions and axioms in T
; I is a model of T
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Introduction to DL: Knowledge Bases: ABoxes

For assertional knowledge: ABox contains

Concept assertions a : C (a an individual name, C a complex concept)

John : Man u ∀has-child.(Male u Happy)

Role assertions 〈a1, a2〉 : R (ai individual names, R a role)

〈John, Bill〉 : has-child

An interpretation I satisfies

a concept assertion a : C iff aI ∈ CI

a role assertion 〈a1, a2〉 : R iff 〈aI
1 , aI

2 〉 ∈ RI

an ABox A iff I satisfies all assertions in A
; I is a model of A
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Introduction to DL: Basic Inference Problems

Subsumption: C v D Is CI ⊆ DI in all interpretations I?

w.r.t. TBox T : C vT D Is CI ⊆ DI in all models I of T ?

; structure your knowledge, compute taxonomy

Consistency: Is C consistent w.r.t. T ? Is there a model I of T with CI 6= ∅?

of ABox A: Is A consistent? Is there a model of A?

of KB (T ,A): Is (T ,A) consistent? Is there a model of both T and A?

Inference Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T ,

(no model of I has an instance of C u ¬D)

C is consistent w.r.t. T iff not C vT A u ¬A

; Decision Procdures for consistency (w.r.t. TBoxes) suffice

RWTH Aachen
Germany

10



Introduction to DL: Basic Inference Problems II

For most DLs, the basic inference problems are decidable,

with complexities between P and ExpTime.

Why is decidability important? Why does semi-decidability not suffice?

If subsumption (and hence consistency) is undecidable, and

➠ subsumption is semi-decidable, then consistency is not semi-decidable

➠ consistency is semi-decidable, then subsumption is not semi-decidable

➠ Quest for a “highly expressive” DL with decidable/“practicable” inference problems

where expressiveness depends on the application

practicability changed over the time
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Introduction to DL: History

Complexity of Inferences provided by DL systems over the time

late
’80s

early
’90s ’90s

mid
’90s
late

Undecidable

ExpTime

PSpace

NP

PTime

Investigation of Complexity of Inference Problems/Algorithms starts

Crack, Kris

Classic (AT&T)

Loom
KL-ONE
NIKL

Fact,      DLP, Race
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Introduction to DL: State-of-the-implementation-art

In the last 5 years, DL-based systems were built that

✔ can handle DLs far more expressive than ALC (close relatives of converse-DPDL)

• Number restrictions: “people having at most 2 children”

• Complex roles: inverse (“has-child” — “child-of”),

transitive closure (“offspring” — “has-child”),

role inclusion (“has-daughter” — “has-child”), etc.

✔ implement provably sound and complete inference algorithms

(for ExpTime-complete problems)

✔ can handle large knowledge bases

(e.g., Galen medical terminology ontology: 2,740 concepts, 413 roles, 1,214 axioms)

✔ are highly optimised versions of tableau-based algorithms

✔ perform (surprisingly well) on benchmarks for modal logic reasoners

(Tableaux’98, Tableaux’99)
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Relationship with Other Logical Formalisms: First Order Predicate Logic

Most DLs are decidable fragments of FOL: Introduce

a unary predicate φA for a concept name A

a binary relation ρR for a role name R

Translate complex concepts C, D as follows:

tx(A) = φA(x), ty(A) = φA(y),

tx(C u D) = tx(C) ∧ tx(D), ty(C u D) = ty(C) ∧ ty(D),

tx(C t D) = tx(C) ∨ tx(D), ty(C t D) = ty(C) ∨ ty(D),

tx(∃R.C) = ∃y.ρR(x, y) ∧ ty(C), ty(∃R.C) = ∃x.ρR(y, x) ∧ tx(C),

tx(∀R.C) = ∀y.ρR(x, y) ⇒ ty(C), ty(∀R.C) = ∀x.ρR(y, x) ⇒ tx(C).

A TBox T = {Ci v Di} is translated as

ΦT = ∀x.
∧

1≤i≤n

tx(Ci) ⇒ tx(Di)
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Relationship with Other Logical Formalisms: First Order Predicate Logic II

C is consistent iff its translation tx(C) is satisfiable,

C is consistent w.r.t. T iff its translation tx(C) ∧ ΦT is satisfiable,

C v D iff tx(C) ⇒ tx(D) is valid

C vT D iff Φt ⇒ ∀x.(tx(C) ⇒ tx(D)) is valid.

; ALC is a fragment of FOL with 2 variables (L2), known to be decidable

; ALC with inverse roles and Boolean operators on roles is a fragment of L2

; further adding number restrictions yields a fragment of C2

(L2 with “counting quantifiers”), known to be decidable

✦ in contrast to most DLs, adding transitive roles/transitive closure operator

to L2 leads to undecidability

✦ many DLs (like many modal logics) are fragments of the Guarded Fragment

✦ most DLs are less complex than L2:

L2 is NExpTime-complete, most DLs are in ExpTime
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Relationship with Other Logical Formalisms: Modal Logics

DLs and Modal Logics are closely related:

ALC � multi-modal K:

C u D � C ∧ D, C t D � C ∨ D

¬C � ¬C ,

∃R.C � 〈R〉C , ∀R.C � [R]C

transitive roles �̇ transitive frames (e.g., in K4)

regular expressions on roles �̇ regular expressions on programs (e.g., in PDL)

inverse roles �̇ converse programs (e.g., in C-PDL)

number restrictions �̇ deterministic programs (e.g., in D-PDL)

➫ no TBoxes available in modal logics

; “internalise” axioms using a universal role u: C
.
= D � [u](C ⇔ D)

➫ no ABox available in modal logics ; use nominals
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