Description Logics—Basics, Applications, and More

lan Horrocks
Information Management Group
University of Manchester, UK

Ulrike Sattler

Teaching and Research Area for Theoretical Computer Science
RWTH Aachen, Germany

RWgH Aachen

Overview of the Tutorial

e History and Basics: Syntax, Semantics, ABoxes, Tboxes, Inference Problems
and their interrelationship, and Relationship with other (logical) formalisms

e Applications of DLs: ER-diagrams with i.com demo, ontologies, etc. including
system demonstration

e Reasoning Procedures: simple tableaux and why they work

e Reasoning Procedures Il: more complex tableaux, non-standard inference prob-
lems

e Complexity issues

e Implementing/Optimising DL systems

RWTH Aachen
Germany

Description Logics

e family of logic-based knowledge representation formalisms well-suited for the
representation of and reasoning about

[1 terminological knowledge
[1 configurations

[1 ontologies

[1 database schemata

— schema design, evolution, and query optimisation
— source integration in heterogeneous databases/data warehouses
— conceptual modelling of multidimensional aggregation

...

e descendents of semantics networks, frame-based systems, and KL-ONE

e aka terminological KR systems, concept languages, etc.

RWTH Aachen
Germany

Architecture of a Standard DL System

Description
Logic

Knowledge Base

Terminology

Father = Man M 3 has_child. T...
Human = Mammal [l Biped

\6encrete Situation

John:Human [Father
John has child Bill

?
j
?
j

M0 <0 MAZMIOMT=—

RWTH Aachen
Germany

maoOX>Tom—=2""

Introduction to DL |

A Description Logic - mainly characterised by a set of constructors that allow
to build complex concepts and roles from atomic ones,

concepts correspond to classes / are interpreted as sets of objects,

roles correspond to relations / are interpreted as binary relations on objects,

Example: Happy Father in the DL ALC

Man M (Jhas-child.Blue) I

)) (Jhas-child.) M

(Vhas-child.Happy LI Rich)

RWTH Aachen
Germany

Introduction to DL: Syntax and Semantics of ALC

Semantics given by means of an interpretation Z = (AZ, .%):

Constructor Syntax Example Semantics
atomic concept, A Human AT C AT
atomic role R likes R C AT x AZ

For C, D concepts and R a role name

conjunction |C M D| Human M Male Ctn D?
disjunction C U D| Nice U Rich Cct u D?*
negation -C — Meat AT\ C*

exists restrict. | IR.C |3has-child.Human| {z | Jy.(x,y) € RT Ay € C*}
value restrict. | VR.C | Vhas-child.Blond {z | Vy.(z,y) € R = y € C*}

RWgH Aachen

Introduction to DL: Other DL Constructors

Constructor Syntax Example Semantics

number restriction| (> n R) (> 7 has-child) | {z | [{y.(z,y) € RT}| > n}

(~ ALCN) (< n R) (< 1 has-mother) | {x | [{y.(z,y) € RT}| < n}
inverse role R~ has-child ™~ {{z,y) | {y,z) € RT}
trans. role R* has-child* (RT)*

concrete domain | uq, . .., u,.P h-father-age, age. >|{z | (ul(x),...,ut(x)) € P}

etc.

Many other different DLs/DL constructors have been investigated

RWgH Aachen 7

Introduction to DL: Knowledge Bases: TBoxes

For terminological knowledge: TBox contains

Concept definitions A C (A a concept name, C a complex concept)
Father Man M ghas-child.Human
Human = Mammal M Vhas-child~.Human
~ introduce macros/names for concepts, can be (a)cyclic

Axioms Ci C Cy (C; complex concepts)
dfavourite.Brewery [ddrinks.Beer
~~ restrict your models

An interpretation Z satisfies
a concept definition A =C iff AT =C7*
an axiom C,CC; iff CTCC?

a TBox 7T iff Z satisfies all definitions and axioms in 7~
~» 7T is a model of 7

RWgH Aachen

Introduction to DL: Knowledge Bases: ABoxes

For assertional knowledge: ABox contains

Concept assertions a : C (a an individual name, C a complex concept)
John : Man M Vhas-child.(Male 1 Happy)

Role assertions (a1,a2) : R (a; individual names, R a role)
(John, Bill) : has-child

An interpretation Z satisfies

a concept assertion a:C iff af € C?*
a role assertion (a1,a2) : R iff (af,al) € R*
an ABox A iff T satisfies all assertions in A

~> T is a model of A

RWgH Aachen

Introduction to DL: Basic Inference Problems

Subsumption: C C D Is CZ C D7 in all interpretations Z7?
w.rt. TBox 7: C C+ D Is C* C D? in all models Z of 77?7

~~ structure your knowledge, compute taxonomy

Consistency: Is C consistent w.r.t. 7?7 Is there a model Z of 7T with C* # (?

of ABox A: Is A consistent? Is there a model of .A?
of KB (7 ,.A): Is (7,.A) consistent? Is there a model of both 7 and .A?

Inference Problems are closely related:

C L+ D iff Cnm =D isinconsistent w.r.t. 7,
(no model of Z has an instance of C M —D)
C is consistent w.r.t. 7 iff not C L+ AN —-A

~» Decision Procdures for consistency (w.r.t. TBoxes) suffice

RWgH Aachen

10

Introduction to DL: Basic Inference Problems Il

For most DLs, the basic inference problems are decidable,
with complexities between P and ExpTime.

Why is decidability important? Why does semi-decidability not suffice?

If subsumption (and hence consistency) is undecidable, and

[1 subsumption is semi-decidable, then consistency is not semi-decidable

[1 consistency is semi-decidable, then subsumption is not semi-decidable

[J Quest for a “highly expressive” DL with decidable/“practicable” inference problems

where expressiveness depends on the application
practicability changed over the time

RWgH Aachen

11

Introduction to DL: History

Complexity of Inferences provided by DL systems over the time

Investigation of Complexity of Inference Problems/Algorithms starts

A
KL-ONE Loom
_ NIKL
Undecidable
ExpTime Fact, DLP, Race
PSpace Crack, Kris

NP

PTime Classic (AT&T)

late early mid late }

RWTH Aachen
Germany

'80s '90s '90s '90s

12

Introduction to DL: State-of-the-implementation-art

In the last b years, DL-based systems were built that

[J can handle DLs far more expressive than ALC (close relatives of converse-DPDL)

e Number restrictions: “people having at most 2 children”

e Complex roles: inverse (“has-child” — “child-of"),
transitive closure (“offspring” — “has-child”),
role inclusion (“has-daughter” — “has-child”), etc.

[1 implement provably sound and complete inference algorithms
(for ExpTime-complete problems)

[] can handle large knowledge bases
(e.g., Galen medical terminology ontology: 2,740 concepts, 413 roles, 1,214 axioms)

[1 are highly optimised versions of tableau-based algorithms

[J perform (surprisingly well) on benchmarks for modal logic reasoners
(Tableaux’98, Tableaux'99)

RWgH Aachen

13

Relationship with Other Logical Formalisms: First Order Predicate Logic

Most DLs are decidable fragments of FOL: Introduce

a unary predicate ¢4 for a concept name A
a binary relation pr for a role name R

Translate complex concepts C, D as follows:

t:(A) = da(x), ty(A) = Pa(y),
t.(C M D) = t,(C) A t,(D), t,(C T D) = t,(C) A t,(D),
t.(C U D) = t,(C) V t.(D), t,(C U D) = t,(C) V t,(D),

t.(AR.C) = Fy.pr(xz,y) ANt,(C), t,(IR.C) = Fx.pr(y,x) ANt,(C),
t.(VR.C) = Vy.pr(z,y) = t,(C), t,(VR.C) = Vz.pr(y,x) = t.(C).

A TBox 7T = {C; C D;} is translated as
b+ = V. /\ tw(Cz) = tw(DZ)

1<:1<n

RWgH Aachen 14

Relationship with Other Logical Formalisms: First Order Predicate Logic Il

C'is consistent iff its translation ¢, (C) is satisfiable,
C'is consistent w.r.t. 7 iff its translation t,(C) A ®7 is satisfiable,
C C D iff t,(C) = t,(D) is valid
C Cr D iff & = Vz.(t,(C) = t.(D)) is valid.

~» ALC is a fragment of FOL with 2 variables (L2), known to be decidable
~» ALC with inverse roles and Boolean operators on roles is a fragment of L2

~~ further adding number restrictions yields a fragment of C2
(L2 with “counting quantifiers”), known to be decidable

[J in contrast to most DLs, adding transitive roles/transitive closure operator
to L2 leads to undecidability

[J many DLs (like many modal logics) are fragments of the Guarded Fragment

[1 most DLs are less complex than L2:
L2 is NExpTime-complete, most DLs are in ExpTime

RWgH Aachen

15

Relationship with Other Logical Formalisms: Modal Logics

DLs and Modal Logics are closely related:

ALC = multi-modal K:

CnbD = CAND, cCub=CvD
-C =2 -C
JdR.C = (R)C , VR.C = [R|C

transitive roles transitive frames (e.g., in K4)

regular expressions on roles regular expressions on programs (e.g., in PDL)

e 1l 1

inverse roles converse programs (e.g., in C-PDL)

1l

number restrictions deterministic programs (e.g., in D-PDL)

[1 no TBoxes available in modal logics
~» “internalise” axioms using a universal role u: C = D = [u]|(C < D)

[1 no ABox available in modal logics ~» use nominals

RWgH Aachen 16

