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Overview of the Tutorial

e History and Basics: Syntax, Semantics, ABoxes, Tboxes, Inference Problems
and their interrelationship, and Relationship with other (logical) formalisms

e Applications of DLs: ER-diagrams with i.com demo, ontologies, etc. including
system demonstration

e Reasoning Procedures: simple tableaux and why they work

e Reasoning Procedures Il: more complex tableaux, non-standard inference prob-
lems

e Complexity issues

e Implementing/Optimising DL systems
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Description Logics

e family of logic-based knowledge representation formalisms well-suited for the
representation of and reasoning about

[1 terminological knowledge
[1 configurations

[1 ontologies

[1 database schemata

— schema design, evolution, and query optimisation
— source integration in heterogeneous databases/data warehouses
— conceptual modelling of multidimensional aggregation

...

e descendents of semantics networks, frame-based systems, and KL-ONE

e aka terminological KR systems, concept languages, etc.
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Architecture of a Standard DL System

Description
Logic

Knowledge Base

Terminology

Father = Man M 3 has_child. T...
Human = Mammal [l Biped

\6encrete Situation

John:Human [ Father
John has child Bill
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Introduction to DL |

A Description Logic - mainly characterised by a set of constructors that allow
to build complex concepts and roles from atomic ones,

concepts correspond to classes / are interpreted as sets of objects,

roles correspond to relations / are interpreted as binary relations on objects,

Example: Happy Father in the DL ALC

Man M (Jhas-child.Blue) I

) ) (Jhas-child. ) M

(Vhas-child.Happy LI Rich)
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Introduction to DL: Syntax and Semantics of ALC

Semantics given by means of an interpretation Z = (AZ, .%):

Constructor Syntax Example Semantics
atomic concept, A Human AT C AT
atomic role R likes R C AT x AZ

For C, D concepts and R a role name

conjunction  |C M D| Human M Male Ctn D?
disjunction C U D| Nice U Rich Cct u D?*
negation -C — Meat AT\ C*

exists restrict. | IR.C |3has-child.Human| {z | Jy.(x,y) € RT Ay € C*}
value restrict. | VR.C | Vhas-child.Blond {z | Vy.(z,y) € R = y € C*}
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Introduction to DL: Other DL Constructors

Constructor Syntax Example Semantics

number restriction| (> n R) (> 7 has-child) | {z | [{y.(z,y) € RT}| > n}

(~ ALCN) (< n R) (< 1 has-mother) | {x | [{y.(z,y) € RT}| < n}
inverse role R~ has-child ™~ {{z,y) | {y,z) € RT}
trans. role R* has-child* (RT)*

concrete domain | uq, . .., u,.P h-father-age, age. >|{z | (ul(x),...,ut(x)) € P}

etc.

Many other different DLs/DL constructors have been investigated
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Introduction to DL: Knowledge Bases: TBoxes

For terminological knowledge: TBox contains

Concept definitions A C (A a concept name, C a complex concept)
Father Man M ghas-child.Human
Human = Mammal M Vhas-child~.Human
~ introduce macros/names for concepts, can be (a)cyclic

Axioms Ci C Cy (C; complex concepts)
dfavourite.Brewery [ ddrinks.Beer
~~ restrict your models

An interpretation Z satisfies
a concept definition A =C iff AT =C7*
an axiom C,CC; iff CTCC?

a TBox 7T iff Z satisfies all definitions and axioms in 7~
~» 7T is a model of 7
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Introduction to DL: Knowledge Bases: ABoxes

For assertional knowledge: ABox contains

Concept assertions a : C (a an individual name, C a complex concept)
John : Man M Vhas-child.(Male 1 Happy)

Role assertions (a1,a2) : R (a; individual names, R a role)
(John, Bill) : has-child

An interpretation Z satisfies

a concept assertion a:C iff af € C?*
a role assertion (a1,a2) : R iff (af,al) € R*
an ABox A iff T satisfies all assertions in A

~> T is a model of A
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Introduction to DL: Basic Inference Problems

Subsumption: C C D Is CZ C D7 in all interpretations Z7?
w.rt. TBox 7: C C+ D Is C* C D? in all models Z of 77?7

~~ structure your knowledge, compute taxonomy

Consistency: Is C consistent w.r.t. 7?7 Is there a model Z of 7T with C* # (?

of ABox A: Is A consistent? Is there a model of .A?
of KB (7 ,.A): Is (7,.A) consistent? Is there a model of both 7 and .A?

Inference Problems are closely related:

C L+ D iff Cnm =D isinconsistent w.r.t. 7,
(no model of Z has an instance of C M —D)
C is consistent w.r.t. 7 iff not C L+ AN —-A

~» Decision Procdures for consistency (w.r.t. TBoxes) suffice
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Introduction to DL: Basic Inference Problems Il

For most DLs, the basic inference problems are decidable,
with complexities between P and ExpTime.

Why is decidability important? Why does semi-decidability not suffice?

If subsumption (and hence consistency) is undecidable, and

[1 subsumption is semi-decidable, then consistency is not semi-decidable

[1 consistency is semi-decidable, then subsumption is not semi-decidable

[J Quest for a “highly expressive” DL with decidable/“practicable” inference problems

where expressiveness depends on the application
practicability changed over the time
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Introduction to DL: History

Complexity of Inferences provided by DL systems over the time

Investigation of Complexity of Inference Problems/Algorithms starts

A
KL-ONE Loom
_ NIKL
Undecidable
ExpTime Fact, DLP, Race
PSpace Crack, Kris

NP

PTime Classic (AT&T)

late early mid late }
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Introduction to DL: State-of-the-implementation-art

In the last b years, DL-based systems were built that

[J can handle DLs far more expressive than ALC (close relatives of converse-DPDL)

e Number restrictions: “people having at most 2 children”

e Complex roles: inverse (“has-child” — “child-of"),
transitive closure (“offspring” — “has-child”),
role inclusion (“has-daughter” — “has-child”), etc.

[1 implement provably sound and complete inference algorithms
(for ExpTime-complete problems)

[] can handle large knowledge bases
(e.g., Galen medical terminology ontology: 2,740 concepts, 413 roles, 1,214 axioms)

[1 are highly optimised versions of tableau-based algorithms

[J perform (surprisingly well) on benchmarks for modal logic reasoners
(Tableaux’98, Tableaux'99)
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Relationship with Other Logical Formalisms: First Order Predicate Logic

Most DLs are decidable fragments of FOL: Introduce

a unary predicate ¢4 for a concept name A
a binary relation pr for a role name R

Translate complex concepts C, D as follows:

t:(A) = da(x), ty(A) = Pa(y),
t.(C M D) = t,(C) A t,(D), t,(C T D) = t,(C) A t,(D),
t.(C U D) = t,(C) V t.(D), t,(C U D) = t,(C) V t,(D),

t.(AR.C) = Fy.pr(xz,y) ANt,(C), t,(IR.C) = Fx.pr(y,x) ANt,(C),
t.(VR.C) = Vy.pr(z,y) = t,(C), t,(VR.C) = Vz.pr(y,x) = t.(C).

A TBox 7T = {C; C D;} is translated as
b+ = V. /\ tw(Cz) = tw(DZ)

1<:1<n
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Relationship with Other Logical Formalisms: First Order Predicate Logic Il

C'is consistent iff its translation ¢, (C) is satisfiable,
C'is consistent w.r.t. 7 iff its translation t,(C) A ®7 is satisfiable,
C C D iff t,(C) = t,(D) is valid
C Cr D iff & = Vz.(t,(C) = t.(D)) is valid.

~» ALC is a fragment of FOL with 2 variables (L2), known to be decidable
~» ALC with inverse roles and Boolean operators on roles is a fragment of L2

~~ further adding number restrictions yields a fragment of C2
(L2 with “counting quantifiers”), known to be decidable

[J in contrast to most DLs, adding transitive roles/transitive closure operator
to L2 leads to undecidability

[J many DLs (like many modal logics) are fragments of the Guarded Fragment

[1 most DLs are less complex than L2:
L2 is NExpTime-complete, most DLs are in ExpTime
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Relationship with Other Logical Formalisms: Modal Logics

DLs and Modal Logics are closely related:

ALC = multi-modal K:

CnbD = CAND, cCub=CvD
-C =2 -C
JdR.C = (R)C , VR.C = [R|C

transitive roles transitive frames (e.g., in K4)

regular expressions on roles regular expressions on programs (e.g., in PDL)

e 1l 1

inverse roles converse programs (e.g., in C-PDL)

1l

number restrictions deterministic programs (e.g., in D-PDL)

[1 no TBoxes available in modal logics
~» “internalise” axioms using a universal role u: C = D = [u]|(C < D)

[1 no ABox available in modal logics ~» use nominals
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